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Abstract
 is now the predominant cause of malaria in the Asia-Pacific,Plasmodium vivax

South America and Horn of Africa. Laboratory studies of this species are
constrained by the inability to maintain the parasite in continuous ex vivo
culture, but genomic approaches provide an alternative and complementary
avenue to investigate the parasite’s biology and epidemiology. To date,
molecular studies of  have relied on the Salvador-I reference genomeP. vivax
sequence, derived from a monkey-adapted strain from South America.
However, the Salvador-I reference remains highly fragmented with over 2500
unassembled scaffolds.  Using high-depth Illumina sequence data, we
assembled and annotated a new reference sequence, PvP01, sourced directly
from a patient from Papua Indonesia. Draft assemblies of isolates from China
(PvC01) and Thailand (PvT01) were also prepared for comparative purposes.
The quality of the PvP01 assembly is improved greatly over Salvador-I, with
fragmentation reduced to 226 scaffolds. Detailed manual curation has ensured
highly comprehensive annotation, with functions attributed to 58% core genes
in PvP01 versus 38% in Salvador-I. The assemblies of PvP01, PvC01 and
PvT01 are larger than that of Salvador-I (28-30 versus 27 Mb), owing to
improved assembly of the subtelomeres.  An extensive repertoire of over 1200 

 interspersed repeat ( ) genes were identified in PvP01Plasmodium pir
compared to 346 in Salvador-I, suggesting a vital role in parasite survival or
development. The manually curated PvP01 reference and PvC01 and PvT01
draft assemblies are important new resources to study vivax malaria. PvP01 is
maintained at GeneDB and ongoing curation will ensure continual
improvements in assembly and annotation quality.
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Introduction
Infection with Plasmodium vivax is associated with significant 
direct and indirect morbidity that impacts on the poorest communi-
ties of malarious countries, with an estimated annual global cost 
of $1-2.7 billion1–3. Accumulating reports of drug-resistant infec-
tion and life-threatening disease underscore the urgency to reduce 
the burden of P. vivax and ensure its ultimate elimination4–8. Efforts 
to contain P. vivax are constrained by a limited understanding of 
the parasite’s basic biology, in part owing to the inability to main-
tain this species in continuous ex vivo culture. Genetic studies 
provide an alternative approach to gain novel insights into the 
parasite from which epidemiological tools and therapeutic 
approaches can be developed for clinical application9–17. The rap-
idly declining costs of massively parallel sequencing technologies 
have made it feasible to undertake whole genome sequencing of 
hundreds of Plasmodium isolates, with recent population genomic 
studies of P. vivax revealing novel antimalarial drug resistance 
and vaccine candidates amongst other biological features of the 
parasite16,17. However, in order to achieve a comprehensive under-
standing of the structure and composition of the P. vivax genome, 
and to improve read mapping efforts to characterise genetic 
polymorphisms, a high quality reference genome(s) representative 
of naturally occurring patient isolates is essential.

The sequences of 5 monkey-adapted strains including the Salvador-I 
reference14 and drafts of Brazil-I, India-VII, North Korea and 
Mauritania-I13 have provided important resources for the vivax 
research community to investigate the core genome of P. vivax. 
However, over 60% of the genes in the published Salvador-I 
reference14 (prior to curation by the authors) had unknown func-
tion, limiting insight into underlying biological mechanisms. 
Furthermore, assembly of the subtelomeric regions is highly frag-
mented in these strains, with Salvador-I comprising >2500 scaf-
folds. A subsequent draft assembly of a Cambodian patient isolate 
(C127) revealed 792 genes not present in Salvador-I, including 366 
new pir (Plasmodium interspersed repeat) genes11. The pir genes 
are a highly variable multigene family present in all Plasmodium 
genomes investigated to date18. The function of pir-encoded pro-
teins (PIRs) remains poorly understood, although recent studies 
suggest roles in mechanisms associated with virulence. In vitro 
studies of P. vivax have demonstrated PIR encoded protein medi-
ated cytoadherence to endothelial cells19,20 and a P. chabaudi mouse 
malaria model demonstrated red blood cell-binding properties 
consistent with roles in invasion and/or rosette formation21. A 
further P. chabaudi study demonstrated that changes in the 
expression of the pir gene repertoire following mosquito passage 
may attenuate virulence22. The sequence diversity amongst the 
pir genes in P. vivax suggests that different subfamilies may have 
different functions14. The published Salvador-I reference 
sequence revealed 346 pir genes, including 80 fragments and/or 
pseudogenes, 10 subfamilies and 84 unassigned genes14. In the 
most recent computational classification, Lopez et al. re-classified 
the Salvador-I pir genes, excluding members of 3 major subfamilies 
(A, D and H) but including previously unassigned genes, and 
re-defining 39 genes as encoding PIRs rather than hypothetical 
proteins23. However, given the limited number of PIRs in Salvador-I, 
further characterisation is required using a reference(s) with a more 
complete set of genes.

To address the need of the vivax research community for a P. vivax 
reference with more comprehensive assembly and annotation, we 
used Illumina genomic data to establish a reference from a Papua 
Indonesian patient isolate (PvP01). Since P. vivax exhibits marked 
regional variation in phenotypes such as duration of the dormant 
liver-stage, drug resistance and disease severity, we compared 
PvP01 to C127 and the 5 monkey-adapted strains, and generated 
draft assemblies of patient isolates from Thailand (PvT01) and 
central China (PvC01). Our sampling focuses on the Asia-Pacific 
region, where a large burden of P. vivax infection lies24. The  
Indonesian reference provides representation of the island of Papua 
- the epicentre of multidrug resistance emergence in P. vivax8. 
The draft references from Thailand and Central China provide  
respective representation of the Mekong region, and the temperate 
north where long latency phenotypes prevail25.

Methods
Samples
Three P. vivax field isolates that were judged to be clonal infections 
following preliminary genomic analysis within the framework of 
a separate study17 were selected for assembly. The isolates were 
sourced from a patient presenting at hospital in northern Australia 
in December 2012 with a recent travel history to Mimika Regency, 
Papua Indonesia (strain PvP01), and patients presenting with 
symptomatic infection to local clinics in Nan Province, Thailand in 
May 2011 (strain PvT01) and Anhui Province, China, in September 
2010 (strain PvC01). Patient blood samples were leukodepleted26, 
and DNA extracted using the QIAamp blood midi kit (Qiagen). All 
samples were collected with written informed consent from the 
patients within the framework of previous studies.

Ethical approval
Ethical approval was provided by the Human Research Ethics 
Committee of NT Department of Health and Families and Menzies 
School of Health Research, Darwin, Australia (HREC-09/83), 
the Mahidol University Faculty of Medical Technology Ethics 
Committee, Bangkok, Thailand (MUTM 2011-043-03), and 
the Institutional Review Board of Jiangsu Institute of Parasitic 
Diseases, Wuxi, China (IRB00004221).

Sequencing, assembly and annotation
Library preparation and sequencing was performed at the 
Wellcome Trust Sanger Institute. Genomic DNA was sheared into 
300–500 base pair (bp) fragments using ultrasonication (Covaris). 
Amplification-free Illumina libraries were prepared27 and 75 bp, 
100 bp and 250 bp paired end reads were generated on the Illu-
mina GAII, Hi-Seq 2000 v3 and MiSeq platforms respectively, 
following the manufacturer’s standard cluster generation and 
sequencing protocols28. Mate-pair libraries with 2–3 kilobase (kb) 
inserts were additionally prepared for PvP01 and PvT01, using the 
Illumina mate-pair library preparation kit (v2), and sequenced on 
the Illumina HiSeq 2500 platform. Prior to assembly, contaminat-
ing host–derived sequences were excluded by mapping against the 
human reference genome (GRCh37: ftp://ftp.1000genomes.ebi.
ac.uk/vol1/ftp/technical/reference/) using BWA29 (version 0.7.4). 
Assemblies were prepared using velvet (version 1.2.07, parameters: 
-exp_cov auto -ins_length 450 -ins_length_sd 30 -cov_cutoff 8, and 
using for a kmer of 71) and MaSuRCA30,31 (version 2.0.3.1, default 
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parameters). Post-assembly genome improvements were under-
taken using a range of automated configuration tools including 
ABACAS (version 2), IMAGE (version 2, iterating k-mers from 71 
down 31, 7 iterations), Gapfiller (version 1–11, 14 iteration, param-
eter n=31) and iCORN (version 2, 7 iterations). PAGIT (version 
1) and REAPR (version 1.0.17) were employed to detect assembly 
errors32–38. This was followed by visual inspection using ACT39 to 
identify any further assembly anomalies. Annotation was under-
taken initially using the automated algorithms, RATT (version 1) 
and Augustus (version 2.7, trained on 500 manually curated gene 
models)38,40,41 and further improved by detailed manual inspection 
performed by an experienced genome curator. PvT01 and PvC01 
were annotated using Companion, a new automated annotation 
tool42. RNA-Seq data from asexual blood stage preparations of 4 
P. vivax patient isolates from Cambodia (unpublished report, 
Jessica Hostetler, Lia Chappell, Chanaki Amaratunga, Seila Suon, 
Thomas D. Otto, Rick Fairhurst and Julian C. Rayner; Accession 
number ERP017542) was used as supporting evidence to aid the 
improvement of gene models in PvP01 by manual curation.

For comparative analyses, genome assemblies and gene annota-
tions were sourced for 6 additional P. vivax strains; Salvador-I, 
C127, Brazil-I, India-VII, Mauritania-I and North Korea9,13,14. The 
published version of Salvador-I14 presented in PlasmoDB release 9 
was selected for comparison of gene annotations as the additional 
improvements in release 10 reflected curations performed by the 
authors. Companion was also used to update the annotation of four 
previously published genomes (Brazil-I, India-VII, Mauritania-I 
and North Korea).

OrthoMCL and pir analysis
Comparisons of predicted protein-coding genes between the 9 
P. vivax assemblies and P. falciparum 3D7 (Pf3D7) (geneDB.org) 
were undertaken using OrthoMCL version 1.443 using the default 
parameter settings. We determined core genes as 1-1 orthologous 
between P. vivax P01 and Pf3D7, in total 4465.

Cluster analysis based on structural and sequence homology was 
undertaken to compare the subfamily organization of the pirs in the 
partial (Salvador-I) versus more complete (PvP01) reference. All 
PIR encoded protein sequences in Salvador-I and PvP01 with length 
greater than 150 amino acids and not flagged as pseudogenes were 
included in the analysis. Low complexity regions were excluded 
using the SEG program44. The relatedness between sequences was 
assessed using BLASTp (parameters -F F -e 1e-6), and the results 
were visualized as a network constructed in Gephi45. After provi-
sional assessment of cluster resolution at different thresholds, a cut-
off of 25% of the global similarity was selected for distinguishing 
different clusters (subfamilies). To aid comparison against the new 
PIRs identified in PvP01, the Salvador-I PIRs were colour-coded 
according to the subfamily classification proposed by Lopez et al23.

Further investigation of the diversity and relatedness amongst the 
PIRs was undertaken using the PIR sets from PvP01, PvT01, PvC01, 
Salvador-I and Brazil-I. Exclusion of proteins with less than 150 
amino acids, filtering of low complexity sequences and relatedness 

analysis using BLASTp were performed as described above. A 
network was constructed from the BLAST output using tribeMCL 
with an inflation of 1.546. To aid visualization, clusters with less 
than 15 PIRs were excluded.

Dataset validation
The PvP01 assembly was generated as a new reference sequence 
and is thus a higher quality, more accurately annotated assem-
bly than PvC01 and PvT01, which were both created as draft 
assemblies for comparative purposes. The PvP01 assembly qual-
ity is greatly improved over the previous Salvador-I reference 
genome, with fragmentation reduced to <250 scaffolds amongst 
other features (Table 1). At 29 megabases (Mb), the assembly 
is notably larger than Salvador-I (27 Mb), mainly due to newly 
assembled subtelomeric sequences. A complete mitochondrial 
sequence (5 kb) and partial apicoplast sequence (29.6 kb) are 
also available. As in P. falciparum47, the apicoplast reference will 
facilitate efforts to identify geographic surveillance markers for 
P. vivax.

Table 1. Features of the new P. vivax assemblies against 
Salvador-I.

Genome features  PvP01a PvC01  PvT01 Salvador-I b 

Nuclear genome 

Assembly size (Mb) 29.0 30.2 28.9 26.8

Coverage (fold) 212 56 89 10

G + C content (%) 39.8 39.2 39.7 42.3

No. scaffolds 
assigned to chrom. 14 14 14 30

No. unassigned 
scaffolds 226 529 359 2745

No. genes c 6,642 6,690 6,464 5,433

No. pir genes 1,212 1,061 867 346

Mitochondrial genome d

Assembly size (bp) 5,989 - - 5,990

G + C content (%) 30.5 - - 30.5

Apicoplast genome 

Assembly size (kb) 29.6 27.6 e 6.6 f 5.1g 

G + C content (%) 13.3 12.7 19.7 17.1

No. genes 30 3 0 0

a Genome version 1.09.2016
b Published reference sequence14

c Including pseudogenes and partial genes, excluding non-coding RNA 
genes.
d Mitochdondrial genome is not present in PvT01 and PvC01
e scaffold PvC01_00_191
f scaffold PvT01_00_162
g Partial apicoplast sequence of Salavador-I reference assembly has been 
published (scaffolds AAKM01000417, AAKM01000371)
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Whilst the assembly quality in the core region is high in 
Salvador-I14, PvP01 displays improved gene models and has more 
complete subtelomeres. Figure 1 provides a schematic of the 
right-hand end of chromosome 12 from PvP01 and Salvador-I, 
illustrating the generally greater extension into the subtelomeric 
regions of chromosomes in PvP01. Furthermore, owing to detailed 
manual curation and continuous maintenance within the GeneDB 
framework, the level of gene annotation in the core genome of 
PvP01 greatly exceeds that of the other available P. vivax assemblies. 
The asexual stage P. vivax RNA-Seq data enabled correction of the 
structure of 377 genes. Of the 4577 core P. vivax genes with 1:1 
orthologues in P. falciparum, 3318 genes were transcribed with 
RPKM (reads per kilobase of transcript per million mapped reads) 
values greater than 15, and contained a total of 4887 splice sites. 
Of these splice sites, a total of 4845 (99.1%) were confirmed by 
≥ 10 reads, highlighting the high quality of the structural annota-
tion. Whereas the published Salvador-I reference includes functions 
attributed to a total of 1783 (38.0%) core genes14, we have been 
able to expand this to 2848 (58.6%) in PvP01, as of the latest 
GeneDB release (1st September 2016). Ongoing curation on PvP01 
will yield further improvements to the annotation statistics, and 
progress is highlighted in Table 2, which summarizes annotation 
changes over a 12 month period between GeneDB releases in 2015 
and 2016. To date, a total of 1209 genes have been identified in 
PvP01 that were either completely absent from Salvador-I or have 
arisen by splitting gene structures that were falsely joined previously 
(Table 1). Although the majority of newly identified genes belong 
to subtelomeric gene families, we confirmed the recently identified 
EBP2 (erythrocyte binding protein 2, PVP01_0102300) and RBP2e 
(reticulocyte binding protein 2e, PVP01_0700500) genes11. These 
genes are members of families encoding proteins implicated in host 
cell recognition during red blood cell (RBC) invasion, and present 
potential vaccine targets48–51.

Table 2. Annotation changes in P. vivax P01 from 1st 
of September 2015 until 27th of September 2016.

Annotation event type PvP01a 

Assigned or updated product 408

Product updated from “conserved 
Plasmodium protein, unknown function” 107

Updated GO term 597

Linked to publication 291

All unique genes with new functional 
annotations, e.g. EC number, gene name 608

All unique genes with new structural 
annotations 50

a Genome version 1.09.2016

Figure 1. Organization of the subtelomeric regions of chromosome 12 of the PvP01 and Salvador-I P. vivax references illustrating the 
higher assembly quality of PvP01. The order and orientation of the genes in the 3’ subtelomeric region of chromosomes 12 of PvP01 (top) 
and Salvador-I (bottom) are shown. Exons are shown in coloured boxes, with introns illustrated by linking lines. Gaps in PvP01 are indicated 
with a forward slash (“/”). The blue box indicates the start of the telomeric heptamer repeats. The shaded (grey) areas mark the start of the 
conserved core of the chromosome that shares synteny with other Plasmodium species (e.g. P. falciparum). The black box shows the syntenic 
area of PvP01 and Salvador-I. The last gene in this syntenic area is fragmented in Salvador-I.

As summarised in Table 3, the comparatively high assembly 
quality in the subtelomeres of PvP01 greatly expanded the 
repertoire of genes belonging to multigene families in these 
chromosome regions. Notably, more than 1200 pir genes were iden-
tified in PvP01 versus 346 in Salvador-I. To generate a snapshot 
of the diversity and structural organization of this expanded gene 
family in P. vivax, we conducted cluster analysis of the PIRs in 
PvP01 with comparison to previous homology classifications per-
formed by Lopez et al on the partial set of PIRs from Salvador-I23.  
As illustrated in the network diagram in Figure 2a, the main sub-
family clusters defined in earlier classifications are expanded but, 
on addition of the new PvP01 PIRs, the clusters remained mod-
erately stable with no pooling between or sub-structure within 
subfamilies. However, the new PvP01 PIRs reveal several large 
subfamilies containing just 1–4 Salvador-I genes that were 
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Table 3. Number of most abundant genes in the subtelomeres in the genomes of Salvador-I, PvP01, PvT01 and 
PvC01.

Description Sal-I a PvP01 b PvC01 PvT01

Multigene family PIR protein c 346 1212 1061 867

tryptophan-rich protein d 34 40 40 40

lysophospholipasee 11 10 9 8

STP1 protein f 9 10 11 3

early transcribed membrane protein (ETRAMP) 10 9 9 9

Plasmodium exported protein (PHIST), unknown function g 64 84 22 23

reticulocyte binding protein (RBP)  9 h 9 h 9 8

Other genes Plasmodium exported proteins of unknown function i 23 447 266 261

Total n/a 497 1812 1427 1219

Numbers include pseudogenes and partial genes
a Published reference sequence14

b Genome version 1.09.2016
c Other names include VIR protein and Pv-fam-c protein
d Other names include Pv-fam-a, trag and tryptophan-rich antigen
e Other names include PST-A protein
f Other names include PvSTP1
g Other names include Phist protein (Pf-fam-b) and RAD protein (Pv-fam-e)
h Includes RBP2e (PVP01_0700500) that was not present in the Salvador-I assembly. RBP1b (PVP01_0701100) is complete in PvP01. In 
Salvador-I RBP1b consists of two partial genes (PVX_098582, PVX_125738)
i Other names include Pv-fam-d protein and Pv-fam-c protein

previously unclassified (Figure 2a). Additional investigation with 
the PvC01, PvT01 and Brazil-I assemblies using tribeMCL (also 
used in Lopez et al) confirmed the stability of the new subfamilies 
identified in PvP01 across a geographically divergent collection of  
isolates (Figure 2b). The analysis conducted here provides a broad 
overview of the diversity and relatedness amongst the expanded 
P. vivax pir gene sets, however further investigation beyond the 
scope of this study will be required to provide detailed char-
acterisation of this family and its contribution to virulence and 
pathophysiology.

The PvP01 reference is an important new resource for the vivax 
research community. It will support studies of the complex subtelo-
meric regions and provide insights into the mechanisms by which 
the gene families in this region contribute to virulence-associated 
functions. It will also allow investigation of an array of other 
biological functions that will expand with continual improvements 
in annotation in the core genome. PvP01, PvC01 and PvT01 add 

new geographic locations to the collection of P. vivax assemblies, 
facilitating biological studies of the diversity of this phenotypically 
divergent species.

Data availability
The raw sequence data for PvP01, PvT01 and PvC01 can be 
retrieved from the European Nucleotide Archive; sample accession 
numbers PvP01 ERS017708, ERS312161 3kb ERS328510, PvT01 
ERS055881, ERS312160 3kb ERS328509 and PvC01 ERS407449. 
The assemblies can be found under the study PRJEB14589. The 
individual accession numbers are PvP01 (chromosomes: cur-
rently in submission to EBI, files on ftp, contigs: FLZR01000001-
FLZR01000226), PvT01 (chromosomes LT615239-LT615252, 
contigs: FLYH01000001-FLYH01000360) and PvC01 
(chromsomes LT615256-LT615269, contigs: FLYI01000001-
FLYI01000530). PvP01 is maintained in GeneDB: http://www.
genedb.org/Homepage/PvivaxP01 and updates are synchronized to 
PlasmoDB.
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Figure 2. Cluster analysis illustrating the relatedness between the PIR proteins in PvP01 versus Salvador-I (a), and the stability of 
the major clusters in several other P. vivax assemblies (b). Panel a) presents a network illustrating the relatedness between the 1063 PIR 
proteins of PvP01 and 341 PIRs of Salvador-I (Sal-I) with length greater than 150 amino acids. The PvP01 PIRs are illustrated by black dots 
(nodes). The Sal-I PIRs are illustrated by coloured dots with colour-coding according to the subfamily classification of Lopez et al23 as follows; 
purple = A, pink = B, pale green = C, red = D, pale blue = E, orange = G, green = H, blue = I, white = J, yellow = K , and grey = unassigned 
genes. Two nodes (PIRs) are connected if they have a global similarity of at least 25%. With the exception of a few proteins, the majority of 
Sal-I PIRs demonstrate clustering consistent with the classification of Lopez et al. Five new, interconnected clusters comprising previously 
unassigned Sal-I PIRs are denoted with a white “X”. In Panel b, a heat map summarises the number of PIRs assigned to the 27 major clusters 
(minimum 15 PIRs in total) in five geographically divergent P. vivax strains; PvP01 (Papua Indonesia), PvT01 (Thailand), PvC01 (Central 
China), Sal-I (El Salvador) and Brazil-I (Brazil). With the exception of Sal-I, which displayed fewer genes than the other isolates in several of 
the major clusters, the isolates demonstrated similar numbers of genes in most clusters.
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This section will be updated with accession numbers for PvP01 
chromosomes onces available.
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 Liwang Cui
Department of Entomology, Pennsylvania State University, State College, PA, USA

This work describes  assemblies of three new  genomes and comparison with the de novo P. vivax
reference Sal I genome and other Pv genomes. Compared with previous annotation of the reference
genome, the new assembly of the PvP01 genome for an isolate from Papua Indonesia has reduced the
total scaffolds from over 2500 in SalI to 226 (+14). Major improvements are in the subtelomeric regions,
where a significantly increased number of pir genes have been discovered. This more in-depth study of
the Pv genome and manual curation of genes provide a better resource for biological studies of the vivax
parasite.
Comments:

Abstract: The quality of the PvP01 assembly is improved greatly over Salvador-I, with
fragmentation reduced to 226 scaffolds.  Perhaps “with fragmentation reduced to 226 unassigned
scaffolds in addition to the 14 chromosomal scaffolds” will be more accurate?
 
Does the “results” section begin at “Dataset validation”?
 
Table 1 presented comparison of the genomes the three new sequences with that of Sal I. The
PvC01 and PvT01 sequences contained more assigned scaffolds – are these located mostly in the
telomeric regions?
 
A more detailed comparison of the temperate strain PvC01 with the tropical strains would be more
useful.  A big-picture type perspective on the C01 and T01 would be nice.
 
Figure 1 illustrates the extension of the assembled sequences in the subtelomeric region of
chrom12 as compared to that in SalI. Are the gap junctions verified by PCR? Also, the PvP01 also
has quite some gaps – how are these assembled and verified?
 
The network presentation of the Pir genes is interesting – A link to the alignment of the sequences
or a phylogenetic tree-type of presentation (as supplements) would be very useful.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.
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 Richárd Bártfai
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In this manuscript, Auburn and colleagues describes the generation and initial analysis of a new P. vivax
reference sequence. The authors extensively sequenced a single-clone field isolate from Papua
Indonesia using Illumina technology. Assembly of these sequence reads lead to a much less fragmented
and better covered core genome sequence. Furthermore, the improved assembly and annotation resulted
in a much more complete overview on the subtelomeric multi gene families in this and two other isolates
from China and Thailand.

Reference genomes are the foundation for all genomic, transcriptomic and proteomic studies. Therefore,
this new reference genome sequence is very welcome and will undoubtedly fuel the exploration of the
biology and pathogenesis of . While it is always difficult to access the quality of such assembliesP. vivax
based on description only it is conceivable that the 20x increase in coverage and the use of various
post-assembly improvement tools have resulted in considerably better genome sequence. Furthermore,
the manual curated gene models and functional classifications bring substantial added value to this work.

Overall this study is well executed and the manuscript is well-written. I have only some minor suggestions
for improvement:

It would be important to clarify in the manuscript why PvP01 has been chosen to be the new
reference “strain”.
 
Sequencing and annotation of multigene families is challenging. To fully exclude the possibility that
the 5 new clusters of PIR proteins identified in this study are the result of incorrect sequence
assembly it would be relevant to PCR amplify and sequence a representative member from each of
these families.
 
In the abstract the authors state that the new reference genome contains 226 scaffolds, while
according to table 1 it appears to be 226+14. Please double-check.
 
I do not find Table 2 particularly useful/informative. It is basically a tribute to a huge amount of work.
 
It might not be formally required to include a subheading “Results” in Welcome Open Research
data notes, but nonetheless it would be nice to know where the description of the results begins.
 
It would bring added value to this article if Table 3 would be extended by description of all and not
only the subtelomeric gene families (Table 2 in Tachibana ., 2012  could provide a niceet al
example). Instead of the extensive footnotes an extra column could be included for alternative
names.
 
In Table 3 it is unclear if other genes includes only “Plasmodium exported protein of unknown
function” or also other proteins. If there are indeed couple of hundred of these proteins encoded in
the PvP01 genome and they localize to the subtelomeric regions as Figure 1 suggests, it would be

perhaps relevant to discuss them as a gene family. It could even be worthwhile to perform a cluster
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perhaps relevant to discuss them as a gene family. It could even be worthwhile to perform a cluster
analysis on this “gene family” similar to the one performed on PIR proteins.
 
On Figure 2B it would be useful to indicate the correspondence between the cluster numbers of
this study and the former classification (A-K). Similarly it would be informative to indicate the cluster
numbers on Figure 2A.
 
From Figure 2B it seems that cluster 5 PIR gene subfamily has expanded (substantially more
numerous) in the Brazilian isolate. Something perhaps worthwhile mentioning/discussing.
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